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Abstract

One of the principal advantages of parallelizing a rule-based system, or more generally, any A.I. system, is the
ability to pursue alternate search paths concurrently. Conventional memory representations for production
systems cannot easily or efficiently support parallel search because of the essentially flat structure of working
memory and the combinatorics of pursuing pattern matching in a large memory space. A further obstacle
to the effective exploitation of parallelism is the problem of maintaining the internal consistency of each
search space while performing parallel activities in other spaces. This paper presents an approach to parallel
search for rule-based systems which involves maintaining multiple separate worlds, each representing a search
space. Constructs for creating, manipulating, and merging separate spaces are discussed. We describe how
the addition of a language mechanism for specifying multiple worlds simplifies the design of parallel search
algorithms, increases the efficiency of the pattern matcher, provides a framework for implementing advanced
control mechanisms such as task-based or hierarchical problem solvers, and reduces or eliminates the overhead
of runtime consistency checking.

1This work was partly supported by the Office of Naval Research under a University Research Initiative grant, number
N00014-86-K-0764, NSF contract CDA-8922572, and DARPA contract N00014-89-J-1877.



1 Introduction
In recent years, the parallel firing of rules has been explored as a method of increasing the performance
of rule-based systems [9, 10, 11, 12, 16, 17, 20, 22, 24, 27]. Much of this work has concentrated
on automatically identifying sets of concurrently executable rules based on a syntactic analysis of rule
sets. Our own research in this area has indicated that the automatic extraction of parallelism and
run-time detection of concurrently executable rules limits the performance of the rule-firing system
to a single order of magnitude speedup [23, 19]. As a result, our research has focused on explicitly
reformulating problems to exploit the underlying parallelism within the domain and designing the
rule-based algorithms accordingly. To this end, a number of enhancements have been made to our
basic rule-firing system which enable the design of parallel and correct programs. Many of these
enhancements take the form of language mechanisms, or idioms, that make it easier to express parallel
algorithms. One of these mechanisms, a set of constructs for supporting the creation of multiple worlds,
is described in this paper. We describe how the addition of a semantics for multiple worlds simplifies
the design of parallel search algorithms, increases the efficiency of the pattern matcher, provides a
framework for implementing advanced control mechanisms such as task-based or hierarchical problem
solvers, solves the problem of determing local quiescence of tasks, and reduces or eliminates the overhead
of runtime consistency checking.

1.1 Motivation

In research reported in [17, 18], we demonstrated that conventional conflict resolution techniques
would cause synchronization delays in parallel rule execution due to unequal rule matching times
and proposed an asynchronous rule-firing scheme in which rules are executed as soon as they become
enabled. One method of eliminating conflict resolution is to interpret competing rule instances as
alternative operators within a search space and to exploit rule-level parallelism by concurrently exploring
alternative solution paths. In many cases, parallel exploration of alternatives can result in a superior
solution by allowing a greater number of possible solutions to be examined rather than selecting
a single alternative using a heuristic conflict resolution scheme. However, neither the structure of
working memory, nor the semantics of production systems is designed to support search, and current
techniques for implementing search are cumbersome to program and potentially inefficient.

The process of searching a state space involves applying one or more operators to a current state
in order to generate new states. In a rule-based system, each state is composed of a set of facts or
working memory elements and the operators are the rules themselves. In order to preserve consistency
while performing search, the system must be able to distinguish between working memory elements
that are contained in separate states. However, most production systems record their facts in a flat
structure that does not provide facilities for manipulating or maintaining separate search spaces. For
this reason, search can only be performed in a limited number of ways in a conventional rule-based
system. One can employ backtracking, creating and deleting states and evaluating each alternative in
turn until an acceptable solution is achieved. Such an approach minimizes the memory requirements
of search since fewer states need to be represented at any given time, however there is no appreciable
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rule-level parallelism in this approach.
A more common idiom for performing search in production systems is to annotate each working

memory element with a specific tag indicating which state of the search space it belongs to. Only
working memory elements with the same annotation are allowed to match. The SOAR system, for
example uses this technique to link all related objects within a sub-task [21]. This approach is suitable
for cases in which there are few states and each state is represented by only a small set of working memory
elements, however, there are a number of disadvantages. First, annotation increases the complexity of
both the left and righthand sides of a production. Working memory elements must be modified to
contain fields whose sole purpose is to represent control data (tags), resulting in more obscure rules.
When copying large states, the corresponding lefthand side of the production must be very large in
order to refer to each element of the previous state. If the number of elements within a state is not a
constant, multiple almost-identical versions of rules with varying lefthand sides must be written. In
order to create a new state, each new working memory element must be specifically asserted in the
righthand side of a production.

The most significant problem with annotation is that it reduces the efficiency of the pattern matcher.
If memory is represented as a flat list (as in the original OPS5 memories), then elements from each state
must be matched against elements in all other states to see if they possess the appropriate tag. Thus, the
matching time and the space required to store partial matches increases combinatorially in proportion
to the number of states. If memory is hashed, as in more recent implementations of production systems
(such as CParaOPS5 [7]), the most obvious choice for a hash key is the state tag, but this reduces the
effectiveness of the hashing implementation to that of a linear memory representation: within a state
there is no internal hashing and all matching is done on the contents of the bucket accessed by the
state tag.

The flat representation of working memory also has implications for parallel implementations of
production systems. Because memory nodes are shared by elements in all states of the search space, as
the number of processors concurrently performing pattern matching increases so does the contention
for the memory nodes, and processors spend an increasing amount of time waiting for access to critical
regions.

2 Partitioned Memory for Parallel Search
The method we have chosen to enable search algorithms to be expressed more easily in production
systems is to employ a multiple worlds representation implemented by partitioning working memory.
The concept of partitioned spaces is not a new one in A.I. problem solvers. The CONNIVER system
introduced the notion of contexts to represent hypothetical worlds [25]. YAPS [1], an object-oriented
version of OPS5, supported multiple databases, as well as a global database. The knowledge-based
systems KEE [3] and ART [26], also incorporate methods for reasoning about hypothetical worlds.
Many of these systems use an assumption-based truth maintenance approach [2] although there is
reason to believe that the overhead of maintaining beliefs would limit pattern-matching performance
and require synchronization between parallel processes. An approach to managing multiple worlds
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for parallel production systems which is similar in concept to assumption-based truth maintenance
was investigated by Matsuzawa [13]. In this work, a method was proposed for a parallel system that
produces all possible results in an expert system by firing all rules simultaneously. This method involves
creating a separate tag for each working memory element created. This tag describes the inference
history of the rule creating the working memory element. Rules are matched against all working
memory elements, regardless of the worlds in which they exist and then a separate merge step takes
place to ensure that all elements enabling a rule instance are consistent. While this method works in
principle, in practice it quickly suffers from a combinatorial growth in terms of length of rule inference
history, and in terms of the increasing size of working memory (because all rules are matched within
a flat database). Other drawbacks include the inability to access all consistent elements in a state (all
elements valid in a particular world), and the inability to execute more than a single rule in the context
of any given world.

In our research, we sought a solution to the multiple world representation problem that was
conceptually simple, easy to implement, reasonably efficient, and that would exploit, at least to some
degree, the fact that many facts in the database are either static or change only at specific times. The
approach that we have implemented is to create separate memory partitions such that each state in the
search space is represented in its own world, and all working memory elements representing that state
are assigned to that partition. A special partition, called the base space (or base partition), is defined
for elements that are guaranteed not to change during the course of problem solving; these elements
represent the immutable “world facts” of the system in question. All working memory elements within
the same state are placed within the same partition and are matched only against elements within that
state or elements in the base partition.

The motivation for the base partition is our observation that working memory elements typically
are employed in a dual role: first, as state variables describing the state of the computation and second,
as facts describing the environment in which problem solving is taking place. It would prove inefficient
to copy all of working memory into each new state in situations in which a large number of elements
remain static during the course of problem solving. For example, when solving a configuration problem,
one would not expect the database of known components to change during the course of problem
solving. Therefore, we provide the facility to specify a “base state” of facts that do not change during
the course of problem solving. The relationship between the base space and all other spaces is depicted
in Figure 1.1

2.1 Semantics of World Spaces

We define the following semantics for rules operating in a multiple world environment:

� The lefthand side of rules can match only elements within a single space, or within the base
space. A rule which matches any element not in the base space is said to be executing in the
space of that element.

1For similar reasons, the mechanism in KEE for maintainingpossible worlds [3] allowed the specification of “background
facts” which were not subject to assumption-based truth maintenance.
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Figure 1: All spaces in the universe of multiple worlds have access to facts represented within the base
space.

� Unless explicitly specified, working memory elements added by a rule are asserted into the space
in which the rule is executing.

� Changes made to working memory elements in one space (excepting the base space) are guar-
anteed not to affect any other space in memory, and by implication, any rule executing in any
other space.

2.2 Language Constructs for Manipulating Spaces

In order to create and manage spaces, our parallel rule-firing system has been augmented with the
following set of commands that are expected to be executed within the righthand sides of rules.

� Generate-new-space: Generate a unique identifier describing a partition.
� Kill-space: Delete all working memory elements in a given state, remove any rules enabled by

these elements from the execution queues, and reclaim the space.
� Assert-into-space: Identical to the working memory creation command, but allows the partition

to be specified.
� Modify-into-space: Modify an existing working memory element and place the result in the

given space.
� Copy-space-to-space: Copy the entire contents of a space into a new space.
� Copy-and-move-to-space: Copy the space in which the rule is executing to a new space and

execute the remainder of the righthand side in the context of the new space.
� Space-quiescent-p: Are any changes being made in the indicated space?
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� Lock-space: Forbid any changes to be made to the memory space.
� Current-space: Return the identifier of the current space.

In addition to the above commands, our production system includes a set-oriented semantics
similar to that described by Gordin and Pasik [6] – the use of this construct allows the programmer
to match selected sets of working memory elements on the lefthand side of the rule and copy them
into a new state. The addition of many new righthand side operators to the language represents
a tradeoff in programming versus representational complexity. By representing the manipulation of
states explicitly in the imperative code of the righthand side of the rule, the pattern-matching lefthand
side is considerably simplified.

3 Advantages of Partitioned Worlds
The use of partitioned spaces, although simple in concept, has surprisingly far-reaching implications
for parallel rule-firing systems; the problems of control, working memory consistency enforcement,
locking, and program design are all simplified and the match process itself becomes more efficient.

3.1 Reduction of Memory Sizes

One of the principal advantages of partitioning memory into multiple worlds is the attendant reduction
of memory sizes during the pattern match. Instead of examining large numbers of elements belonging
to multiple states, the pattern matcher need only examine the set of elements corresponding to the
current state. Because pattern-matching within the Rete net frequently leads to combinatorial growth
in the number of partial matches, restricting the number of elements in each space will result in faster
matching. We expect, based on our experiences in problem solving in production systems, that the
number of elements in each problem space will be relatively few and the small amount of memory
required to represent each state will compensate somewhat for the additional overhead of maintaining
many states at once in a parallel system.

3.2 Working Memory Consistency and Multiple Worlds

When multiple rules execute concurrently, there is the chance that the changes that they make to working
memory will interact, resulting in a working memory state that could not be achieved by any serial
order of rule firing; results of this nature are said to be non-serializable. The problem of maintaining
working memory consistency during the course of parallel rule-firing has been extensively studied
[9, 10, 22, 23]. One of the motivating factors for the development of the multiple world paradigm
for parallel production systems is the virtual elimination of overhead for consistency maintenance.
Because rules in separate spaces do not share state-specific data, analysis of interactions between rules
executing in separate spaces is not necessary. The complete independence of partitions means that rule
firings in different spaces can be scheduled and executed asynchronously with respect to each other,
increasing the potential processor utilization. The asynchronous execution of rules in multiple worlds
is similar to the control architecture proposed by Miranker, Kuo and Browne [14, 11], however, the
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parallel partitions are generated explicitly by the task-based semantics of the problem solving process
rather than extracted via an analysis mechanism.

It is still possible for rules operating within the same partition to interact. However, the number of
rules executing within each space can reasonably be expected to be small; because the cost of interaction
detection is dependent on the number of rules concurrently executing [19, 23] the cost of ensuring
serializability will be greatly reduced.

3.2.1 Communication between Spaces

In general, the separation between spaces is held to be absolute, that is, there is no interaction between
rules executing in separate partitions. However there are situations in which it is desirable to support
communication between spaces, for example, when asserting a solution or returning a result from
a subtask to a superior task. The command set of the production system is augmented with an
assert-into-space command that allows rules to place results in the working memory of another space.
When this occurs, the assumptions of space independence are violated and locking of working memory
elements, detection of interactions, or very careful design are required to ensure correct and serializable
behavior of the system when running in parallel. Because the communication between spaces occurs
only at well-defined points in the computation and only for specific purposes, it is possible to design
inexpensive constructs for ensuring correctness, i.e. the idiom for merging multiple solutions described
in [18].

3.3 Multiple Worlds and Control of Parallel Rule-firing

In [17], we raised a number of issues relevant to the sophisticated control of production systems,
namely:

� How can a task- or goal-oriented control scheme be imposed on the essentially data-driven
paradigm of rule-based programming?

� How can we insure that all related rules have become quiescent before beginning a control
process?

� How can rules be dynamically scheduled to ensure high utilization of each processor?

We can show how the use of spaces makes each of these problems manageable.

3.3.1 Task-based Control

The principal difficulty in implementing task-based control in a parallel rule-based system is identifying
when a particular rule is applicable to a specific task. Because multiple rules can execute simultaneously
and assert working memory elements at unpredictable times, it is not possible to attribute the activation
of a rule instance to any specific working memory element or rule firing, nor can it be determined
when all rules applicable to a specific goal have been discovered. Multiple worlds can be used as a
framework to construct a task-based architecture. Specific goal elements representing individual tasks
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can be asserted into new spaces; a single task group then consists of all rules executing within that
space. A task can be said to have completed when all applicable rules have been executed within that
space. Communication of results from subtasks to parent tasks can be performed by the assert-into-space
operator. Subtasks that prove to be redundant can be pruned by the use of the kill-space operator.

3.3.2 Determining Quiescence

We can increase the utilization of processing resources and eliminate synchronization delays by allow-
ing rules (or at a more coarse-grained level, tasks) to execute asynchronously in parallel. However,
asynchronous execution in a data-driven paradigm introduces a new problem, that of determining
quiescence, where quiescence is defined as the termination of pattern-matching activities and rule in-
stantiation with respect to a subset of working memory elements and rules. The determination of
quiescence is especially important when the nature of the problem being solved requires a decision to
be made between alternative operators or rules. When solving many subproblems asynchronously in
parallel, waiting for complete global quiescence is not practical; this would impose an unnecessary syn-
chronization relationship between unrelated computations. Instead, we wish to ensure that quiescence
has been achieved relative to a single task. However, because rule-based systems are data-driven, it is not
easy, based purely on syntactic information, to determine the scope of a working memory change. We
can solve this problem by partitioning working memory according to a semantic task decomposition.
If we limit the effects of all rule instances in a task to a single space, we can define local quiescence in
the following way:

� No working memory element is currently being asserted, modified, or removed within the task
space.

� No rule that asserts elements into the task space has been scheduled for execution.
� No modifications are made or pending for the base space.

Control can then be performed on locally quiescent tasks while computation proceeds in other
spaces and delays due to global synchronization can be avoided.

3.3.3 Process Management in Multiple Worlds

There is a time/space trade-off associated with multiple worlds. In exchange for processing worlds
concurrently, many spaces must be represented concurrently, with each space potentially containing
redundant information. We can minimize the space overhead by observing that most states are transient:
they are created, processing occurs, and successor states are generated. States are never referenced after
generating successors, therefore we can reclaim spaces as processing is completed. In general, the
number of spaces actually in existence need never greatly exceed the number of processors available
to generate concurrent tasks. To ensure this, we need to modify our rule-scheduling mechanisms to
ensure that all rules referencing a currently instantiated state are executed expeditiously so that the state
may generate its successors and be reclaimed.
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4 Implementation
A multiple world implementation has been developed for UMass Parallel OPS5 (UMPOPS) [18].
The system runs on a 16 processor Sequent shared-memory multiprocessor and is implemented in Top
Level Common Lisp2. Although the following discussion is restricted to a Rete net implementation, the
concept of partitioned memory spaces is also applicable to non-Rete algorithms such as TREAT [15].

4.1 Partitioned memory in the Rete net

The Rete net is a data structure that has been widely used in the implementation of production
systems [4, 7]. Much of its efficiency results from taking advantage of temporal redundancy by storing
partial matches. Because the database is expected to change only slowly, this allows rapid matching
as new data arrives. The Rete net can be considered as a discrimination net augmented with memory
at the individual nodes. Working memory elements that are propagated through the net are formed
into lists of tokens corresponding to partial matches against a rule’s lefthand side. A token of length

�

represents the working memory elements corresponding to the first
�

positive condition elements in
the rule’s righthand side; all variable bindings within a token are guaranteed to be consistent. These
tokens are stored in memory nodes within the network. The Rete-net has two types of beta nodes
which require that state be preserved. Simplifying somewhat, AND nodes concatenate tokens together
and ensure consistent bindings of variables. NOT nodes serve as gates and pass tokens only if they
have no consistent variable binding with any working memory element matching a negated condition
element. Each beta node has two inputs, one representing an incoming working memory element and
one representing an incoming token consisting of a list of previously matched elements. Because each
element arriving at one input of the node must be compared with each element arriving at the other
input, all tokens passing through a beta node are stored in either a lefthand or righthand memory (see
Figure 2). A description of the functioning of the Rete net can be found in [5].

The modifications to the Rete net are fairly straightforward. Instead of being represented as a flat
list or a single hashed table, each memory node with the Rete net is defined as an array, or as an array
of hash tables (where the space allocated to the array may grow as the number of states increase). As
tokens are propagated through the network, they are placed in the appropriate memory space. Because
each node may not contain elements from all spaces, nodes may be assigned tables to map from space
indices to array indices in order to conserve space. In the case of AND nodes, processing proceeds very
much as in the single-space Rete net, but with the following distinction: tokens entering the node are
matched only against items in the same partition in the corresponding memory or tokens in the base
partition of the node memory. The modified representation of the Rete node is depicted in Figure 3.

NOT nodes, which represent negated condition elements are somewhat more complex.3 Briefly,
the reason for this is that the NOT stores a count of the currently matching elements for each negated
token in one of its memories. Because it is possible that the negated token might exist in the base

2Top Level Common Lisp is a trademark of Top Level, Inc.
3It is our experience that any aspect of the implementation of rule-based programming involving negation becomes

considerably more complex.
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Figure 2: The basic memory structures for the AND(A) and NOT(B) nodes of the Rete net.
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Figure 3: An AND node of the Rete net in a system modified to support partitioned memory spaces.
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partition, it is not possible to simply direct a pointer to the base memory since any modification to
the base partition would affect the match process for all partitions. For this reason, the contents of the
base partition of a NOT node must be copied to each new space at initialization time.

4.1.1 Performance Considerations

Because of the large variations possible in state sizes and number of states, it is difficult to make any
specific claims about the efficiency of our multiple worlds implementation. We have tested the system
using a version of the Travelling Salesperson problem and have seen approximately a 20% decrease
in execution time when compared with an implementation that explicitly annotates working memory
elements with discrete state tags. The relative increase in performance is independent of number of
processors assigned to the benchmark and can be largely attributed to the elimination of the overhead
of insuring consistent bindings for the state variables and the reduced memory size during pattern
matching. In these experiments, it proved critical to the performance of the system that the size of
individual node memories be initially set to close to the required size because dynamically increasing
the number of states represented at runtime was extremely expensive.

The creation of a state, or the copying of one state into another, is the largest bottleneck and
potential source of overhead in a multiple world representation. One method of reducing the cost of
creating new states is to insert working memory elements into the new state in parallel using action
level parallelism [8]. In UMPOPS, we have observed an approximately 8-fold decrease in execution
time for rules which assert multiple elements in parallel.

5 Conclusion
This paper has described a scheme for implementing multiple worlds in a parallel production system and
has discussed a number of the implications on the design and efficiency of programs implemented using
this mechanism. We have found that the use of partitioned memory spaces greatly simplifies a number
of issues involved in the successful design of parallel rule-firing programs including the representation
of states for parallel search, avoidance of rule interactions, reduction of pattern matching times, ease of
design, and development of sophisticated control idioms. The principal drawback to the scheme that
has been presented here is the possible redundancy due to the complete copying of state from world to
world. We are currently implementing a multiple world scheme based on state inheritance which will
be benchmarked against the existing implementation.
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